1.2-Di-t.-BUTYL-3.4.5, 6-TETRAMETHYL-BENZOCYCLOBUTADIEN

Henner Straub

Institut für Organische Chemie der Universität Tübingen, D-7400 Tübingen, Germany (Received in Germany 22 July 1976; received in UK for publication 5 August 1976)

Während das nur in einer Argon-Matrix haltbare Benzocyclobutadien schon oberhalb 75° K dimerisiert¹⁾, lassen sich die Derivate $\frac{1}{2}$, $\frac{2}{2}$ und $\frac{3}{2}$, bei denen die reaktive 1,2- und 2,2a-(bzw. 1,6a-)Stellung durch hinreichend sperrige Reste blockiert sind, auch bei Raumtemperatur fassen. Die mesomeriefähigen Phenylreste in 1,2-Stellung in $\frac{1}{2}$, $\frac{2}{2}$ und $\frac{3}{2}$ verfälschen aber das cyclische 8π -System des Grundstoffes nachhaltig. Wir haben deshalb versucht, erstmals ein rein aliphatisch substituiertes Derivat herzustellen $\frac{4}{2}$.

Zur Synthese von ½ gingen wir von dem trans-konfigurierten Cyclobuten-Berivat ¼ (Fp.: 54-56°C)^{5,6)} aus, das seinerseits durch eine Grignard-Reaktion von trans-3, 4-Dichlor-1,2,3,4-tetramethylcyclobuten mit t.-Butyläthinyl-magnesiumbromid in Äther in 29proz. Ausbeute zugänglich ist. ¼ isomerisiert sich beim Erhitzen auf 140°C (ohne Lösungsmittel) glatt in das gelbe Derivat ½ (Fp.: 125-127°C, 45%)⁵⁾. Im Gegensatz zu ¼ ist die Verbindung ½ selbst bei diesen Temperaturen so stabil, daß sie keinerlei Neigung zur Dimerisierung zeigt. ½ ist auch gegen Luftsauerstoff weniger empfindlich als ½.

Der auffälligste Unterschied zwischen der roten Verbindung 12 und der gelben Verbindung 12 zeigt sich erwartungsgemäß im Elektronenspektrum [n-Hexan, nm(log€): 372(2.43), 335 Sch (2.37), 317(2.42), 305 Sch(2.37), 242.5(4.44), 236.5(4.43)]. Das ¹H-NMR-Spektrum ⁷⁾ weist

3 Singuletts bei 1.24, 1.97 und 2.04 im Verhältnis 3:1:1 auf. Im IR-Spektrum (KBr) findet sich u.a. eine schwache Bande bei 1575 cm⁻¹, sowie eine stärkere Bande bei 1475 cm⁻¹. Beide Banden fehlen im Hydrierprodukt 6.

Der chemische Strukturbeweis für die Verbindung 1½ gründet sich einmal auf die Oxidation mit 2 Mol m-Chlorperbenzoesäure zu 5 (Fp.: 139°C, 70%)^{5,6)}, zum anderen auf die katalytische Hydrierung mit Palladium auf Calciumcarbonat, bei der unter Aufnahme von einem Mol Wasserstoff das Benzocyclobuten 6 (Fp.: 58-59°C, 100%)^{5,6)} [1H-NMR⁷⁾: 1.17(s, 18H), 2.20(s, 6H), 2.23(s, 6H), 3.60(s, 2H)] entsteht. Die paramagnetische Verschiebung der Methylsignale in 6 gegenüber denen in 1½ fällt auf, wenngleich der Betrag gering ist.

Herrn Professor Dr. Eugen Müller danke ich für die großzügige Förderung dieser Arbeit. Die Arbeit wurde ferner von der Deutschen Forschungsgemeinschaft unterstützt.

Literatur und Anmerkungen:

- 1) O. L. Chapman, C. C. Chang u. N. R. Rosenquist, J. Amer. Chem. Soc. 98, 261 (1976).
- 2) H. Straub, Angew. Chem. 86, 412 (1974), Angew. Chem. internat. Edit. 13, 405 (1974).
- 3) F. Toda u. N. Dan, J. C. S. Chem. Comm. 1976, 30.
- 4) gescheiterter Syntheseversuch des 1,2-Di-t.-butyl-benzocyclobutadiens: N.Avram, D. Constantinescu, I.G. Dinelescu u. C.D. Nenitzescu, Tetrahedron Lett. 1969, 5215, E. Müller, H. Fettel u. M. Sauerbier, Synthesis 1970, 82.
- 5) für alle neu hergestellten Verbindungen wurden korrekte Elementaranalysen und Massenspektren erhalten.
- 6) Die hier nicht weiter interessierenden spektroskopischen Daten werden später im Rahmen einer zusammenfassenden Arbeit veröffentlicht.
- 7) CDCl3, &-Werte in ppm mit TMS als internem Standard.